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INTRODUCTION

As is well known Newton’s equations do not depend on the inertial frame
chosen. A geometric formulation of Newtonian mechanics in Newtonian space-
-time is therefore possible. On the other hand intrinsic formulation of analytical
mechanics in Newtonian space-time is not possible since different Lagrangians
and different Hamiltonians are used for different inertial frames. The same is
true of the Hamilton-Jacobi theory and Schrodinger wave mechanics. A similar
difficulty encountered in analytical mechanics of charged particles was resolved
by enlarging the configuration manifold of the particle [6]. The same technique
is used in the present note. An intrinsic formulation of analytical mechanics and
wave mechanics is obtained. Conventional formulations are obtained by reducing
the dimension in a frame dependent way. This work is related to the papers of
Bergmann [1], Lévy-Leblond [5] and Duval and Kiinzle [4].

The present paper is a contribution to a programme of Symplectic Geometry
and Mathematical Physics conducted jointly with Professor Benenti at Istituto
di Fisica Matematica «J.-L. Lagrange» in Torino. This programme enjoyes the
continued interest and encouragement by the Director of the Institute Professor
Dionigi Galletto and the support of the Consiglio Nazionale delle Ricerche,
Gruppo Nazionale per la Fisica Matematica.

1. AFFINE SPACES AND AFFINE TRANSFORMATIONS

An affine space is a triple (M, V, p), where M is a set, V is a vector space, p is
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a mapping of M x M in V and the following conditions are satisfied:

(a) p(x,x)=0,

(b) p(x",x") + p(x', x) = p(x", x),

(c) for each x the mapping p, : M — V defined by p,(x') = p(x', x) is bijective.
We will write x' — x instead of p(x’, x) and x 4 v instead of p;l(v).

Automorphisms of an affine space are called affine transformations. More
specifically, a bijective mapping o : M - M is an affine transformation if there
exists a linear transformation a : V- V such that a(x’) —a(x) = a(x' — x). The
linear transformation «a is called the linear part of the affine transformation o. An
affine transformation is called a translation if its linear part is the identity
mapping. The group of affine transformations of M will be denoted by 4(M) and
the group of linear transformations of ¥ will be denoted by GL(V). For each
point x in M there is a bijective relation between elements of 4(M) and GL(V) x
x V. The affine transformation « = (a, ¢), corresponding to the pair (a,c) is
defined by

a(x)=x+a(x"—x) +c.

The linear transformation g is the linear part of the affine transformation o =
= (a, c)x and the vector c¢ is obtained from

¢ =ofx)—x.
The equality
(@', )y = (a, 0,
implies
a=a, ¢ =c%alx'—x)—(x —x.
The composition relation
(@',c), o c),=(@oa,a(c)+c"),

is easily verified.

2. THE NEWTONIAN SPACE-TIME AND GALILEI TRANSFORMATIONS

Let (M, V, p) be an affine space of dimension 4 representing the physical space-
-time of nonrelativistic physics. Let 7 be an element of the space I'* dual to
V. The set

T,={veV; =0}

is a vector subspace of V and
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T ={veVv,n=1}

is an affine subspace of V. If § : T, x 7, > T; is defined by 0(v',v) =v = v then
(Tl, 7(‘),0) is an affine space. Let g :Tb» 7;)* be an Euclidean metric tensor on
7;). The objects 7 and g are used to measure time intervals and spacial distances.
The time At elapsed between two events x and x' in M is expressed by

At ={(x"—x, 1)

The two events are simultaneous if (x'—x,7)= 0. The distance d between
simultaneous events x and x' is calculated from

d?=(x'—x,g(x' —x)).

The system (M, V, p, 7, 8) is called the Newtonian space-time. An inertial frame
in the Newtonian space-time is an element u of the affine subspace 7;.

Automorphisms of the Newtonian space-time are called Galilei transforma-
tions. The group of Galilei transformations will be denoted by GA(M). A Galilei
transformation is an affine transformation o of M whose linear part a is an auto-
morphism of the system (V, 7, g). Restricted to 76 the linear transformation a
induces a linear transformation a, of 7. This transformation belongs to the
group 0(76) of automorphisms of (76, g) called orthogonal transformations.
Restricted to 7 the transformation a induces an affine transformation a, of T,.
The orthogonal transformation 4 is the linear part of a,. The linear transforma-
tion a is completely determined by the affine transformation a,. It u is any
inertial frame then

a@y=a+ (1 — <, MHu) — (1 —<{v, ™Ma(u) =
= al(v + (1 — (v, Hu)y — (1 — (v, T))al(u).

It follows that if an inertial frame u is chosen then elements of the group GA (V)
of automorphisms of (V, 7,g) are in one to one correspondence with elements
ofO(TO) X 7;). We will denote by (aO, b), the automorphism corresponding to the
pair (aO, b) Ifa= (ao, b), then a, is the orthogonal transformation of 7;)induced
by a and b = a(u) — u. Hence,

av) = ayv — v, Hu) + (v, ) (u + b).
The equality
(@ b, = (g, b),

implies

’

a4y

=a,, b’=b+a0(u’—u)—-u'+u.
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Ifa=(ay, b), and a’ = (ag, b"), then
a'ca= (a(’) cay,ay(b) +5b'),.

A choice of an event in M introduces a one to one correspondence between
Galilei transformations and elements of GA (V) x V. If an inertial frame is chosen
then elements of GA(V) are in one to one correspondence with elements of
O(TO) X 76. If both an event x and an inertial frame u are chosen then we have a
bijective relation between Galilei transformations and elements of O(TO) X 76 x V.
We will denote by @y b, c)(x’u) the Galilei transformation ((ay, b),, ©), corres-
ponding to the triple @y b,0). Ifa= (ay b, c)( then

X, u)
ox") =x + (a((x" = x) = (x" = x, YUY +(x" = x, (U +b) +¢).
The equality
(aé): b,: c')(x"u’) = (aoy b9 c)(x,u)
implies

!

ag=a, b'=b+a0(u'—u)—u’+u

and

¢'=c+ aO((x' —x) = (x"—x, Yu)+{x" —x, (U +b)—(x' —x).
If o’ = (ap, b', c')(x’u) and a = (ay, b, ), , then

a'oa= (ay o ag, aé)(b) +b',

a(')fc — (e, mHu) + (e, T u +b) + C’)(x,u)'

3. NEWTONIAN MECHANICS

Newton’s equations of motion are second order differential equations in the
Newtonian space-time. Since M is an affine space the tangent bundle TM is
identified with M x V and the second tangent bundle T2M is identified with
M xVx V. The cotangent bundle T*M is identified with M x V*. The dif-
ferential of a differentiable function U: M — IR will be interpreted as a mapping
dU:M—->V* Llet: I,— V denote the canonical injection. A degenerate contra-
variant metric tensor g' : V* - V is defined by g’ =t°og L oi*. The dynamics of
a particle of mass m is described by the set

E={(x,x,X)ET*M; (%, 7)=1,m¥x =—g'(dU(x))},

where U is the potential energy of the particle.
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4. INERTIAL FRAMES AND ANALYTICAL MECHANICS

Analytical mechanics of a particle is described by first order differential equa-
tions in the space-time-momentum-energy space T*M identified with M x V'*.
An element p of V* represents momentum and energy of a particle. If v is an
inertial frame then p —(u, p) 7 is the momentum and e = — (u, p) is the energy.
The tangent bundle T7T*M is identified with M x V* x V' x V*. In an inertial
frame u the dynamics of a particle is represented by a submanifold D of TT*M.
An element (x, p, x', p') of TT*M belongs to D if

1
x=(x', ﬂ(u + —g’(p)).
m

p'=— (' 1dU(x)
and

1

(u,py + — €' @), p)+ U(x) = 0.
m

The submanifold D is a homogenous Hamiltonian system [3] generated by a
submanifold X of T*M. An element (x, p) of T*M belongs to K if

1

(u,py+ — '), py + Ulx) = 0.
2m

The tangent bundle TM is identified with M x V. The homogenous Lagrangian
for the system D is the function L : TM - R defined by

m

L(x,x")= O —x u,g(x = (', mw)y — (X, Ty U(x).

2x', 7
It is easily seen that submanifolds D corresponding to different inertial frames
u and u' are different. It is not possible to formulate analytical mechanics in
Newtonian space-time in a frame independent way. A frame independent formu-
lation of analytical mechanics is possible in an enlarged space called the Galilei
space.

5. HAMILTON-JACOBI EQUATIONS IN THE NEWTONIAN SPACE-TIME

The Hamilton-Jacobi equation in an inertial frame u is the equation
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1
(u,dSy+ — (g'«dS,dS)»+U=0
2m
for a function S : M - R.
The Hamilton-Jacobi theory in the Newtonian space-time is frame dependent.
An intrinsic Hamilton-Jacobi theory can be formulated in the Galilei space.

6. INERTIAL FRAMES AND SCHRODINGER EQUATIONS
Let u be an inertial frame. The wave function ¢ : M — C of a particle of mass
m satisfies the Schrodinger equation

h2
ih(u,dy)+ — Ag ¥ — Uy =0,
2m

It is easily seen that a solution ¢ of the Schrédinger equation in one inertial
frame u will not in general satisfy the Schrodinger equation in a different inertial
frame u’. The same quantum state of a particle must be represented by different
wave functions in reference to different inertial frames. An intrinsic formulation
of Schrodinger wave mechanics in Newtonian space-time is not possible. A frame
independent formulation of wave mechanics in the Galilei space is described in
Section 10. Conventional Schrodinger equations are obtained by frame depen-
dent reductions.

7. THE GALILEI SPACE AND GALILEI TRANSFORMATIONS

The Galilei space is a system (N, W, 0, g, z), where (V, W, o) is an affine space
of dimension 5, g : W - W* is a metric tensor of signature 3 and z is a vector in
W such that (z, g(z)) = 0.

Let Z C W be the space of vectors proportional to z, let V' denote the quotient
space of W by Z and let x : W > V be the canonical projection. There is a unique
element 7 of V* such that

(x(w), ) =(w, g(2)).

In the space T ={v€E V;(v, 7) = 0} there is a unique metric tensor g : 7y —> T*
such that

(x(w"), g(x(w))) =<(w', g(w)

if (w,2(z))=0 and {(w',g(2)) = 0. Let M denote the quotient space of N by
the equivalence relation according to which two points ¥ and vy ' are equivalent
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if a(¥’,») belongs to Z. Let 4 : N—->M be the canonical projection. There is a
unique mapping p : M x M = V such that

(¥ u(¥)) =x(a(¥', ).

The system (M, V,p,7,g) is the Newtonian space-time. We will write y' —y,
vy +w, x' —x and x + v instead of o(3', ¥), oy‘l(w), p(x', x) and p;l(v) respecti-
vely.

An inertial frame in the Galilei space is a vector & in W such that (&, g(@)) = 0
and (¥, g(z))=1. The vector ¥ =x(%) is an inertial frame in the Newtonian
space-time.

Automorphisms of the Galilei space will be called extended Galilei transforma-
tions. An extended Galilei transformation is an affine transformation & : N> N
whose linear part @ : W — W is an automorphism of (W, g, z). The group of extend-
ed Galilei transformations will be denoted by GA(N) and the group of automor-
phisms of (W, g, z) will be denoted by GA(W). If @ is an element of GA (W) then
there exists an element a of GA(V) such that x ca =a o x. Let « be an inertial
frame. The space

U={weWw,g@)=0}
is a complement of Z in W. It follows that there exists a unique mapping x,, : V-
— W such that x(Ku(v)) =vand (Ku(v), g@)y=0.1Ifa = (ao, b)u then
a(w) =k (ay(x(w —(w, g(z))u))) +
+(w, g(2))k (D) +{w, g(z))u +
—(ay(x(w —(w,g(z))W), g(b))z +

1
-= (b,gb)){w,g(z))z +(w,g(u))z.

“

Since @ is completely determined by « it follows that GA(W) and GA(V) are
two canonically isomorphic faithful representations of the same abstract group.
The choice of a point » in /N establishes a one to one relation between extended
Galilei transformations and the elements of GA(W) x W. If &:(E,F)y then

a(r)y=y+a(y —y)+c.

8. ANALYTICAL MECHANICS IN THE GALILEI SPACE

Spaces TN, T*N and TT*N are identified with N x W, N x W* and N x W* x
x W x W* respectively. We will denote by g’ : W* > W the inverse of g. The
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dynamics of a particle is described by a submanifold D of TT*N. An element
(y,r,y',r") belongs to D if

, L Gey v
y=—0Le@Ngmn i ——— + — 0.g@nU)|z
m 2¢y',g(z)y m

and

r=—' ) dU(y),

where U = U o u. The submanifold Disa homogenous Hamiltonian system gene-
rated by a submanifold K of T*N. An element (»,r) of T*N belongs to K if

1 _
— En.n+UH»)=0
2m
and

(z,ry=m.

The homogenous Lagrangian for this system is the function L : TN - IR defined
by

m

Ly, y)= ——— O BN =" @) U(»).
2¢v",8(2)

9. THE HAMILTON-JACOBI THEORY IN THE GALILEI SPACE

The Hamilton-Jacobi theory in the Galilei space is based on the following
two equations:

1 _
— (g odF,dFY+ U=0
2m
and

(z,dF)=m

for a function F : N—- R.

10. WAVE MECHANICS IN THE GALILEI SPACE

Quantum states of a particle of mass m in the Galilei space are represented
by wave functions ¢ : N - € satisfying wave equations
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h2

— 0y ¢~ Up=0
2m

and

iti(z, dg) + m¢ =0,

where U = Uopu.

11. INERTIAL FRAMES AND REDUCTIONS IN ANALYTICAL MECHANICS

Constructions used in the present section are based on the theory of reductions
of symplectic manifolds [2] adapted to the affine case.
Let Cjand C, be subspaces of W* defined by

CO:{rE W*.(r, z) = 0}

and
C,={reW*r,z)=mj.

The space (| is the polar of Z. It is also the image of x*. If a mapping w :C,, X
x C — C,is defined by w(r’,r) =r"—r then (C,,» Cp» @) is an affine space. The
space N x C,_is a coisotropic subspace of the symplectic affine space T*N = N x
x W*_ The reduced symplectic space is the affine space M x C,..- The mapping p x
xid :Nx C_->MxC,  will be denoted by ». The space T(N x Cp)=NxC, x
x W x C is a coisotropic subspace of the affine symplectic space TT*N = N x
x W¥* x Wx W#*. The reduced symplectic space is the space T(M x C,)=Mx
xC, x VxCO. The mapping u x id x x x id :NmexWxCO»Mme X VxC0
will be denoted by Tv.
Reducing the Hamiltonion system D we obtain the submanifold

D’ =TV(DO(Mmex V x CO)).
An element (x, r, x". ') of M x Cp x VxCyisin D7 if

r=—(x mxFdUKX)),

x'=—(x' (g (r)

t | —

and

I _
— (&' W, n+ Ux) =0.
2m
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The submanifold D" is a homogenous Hamiltonian system generated by the
submanifold
K =v(ENMxC,)).
An element (x,r) of M x C, isin K" if
1

— @M, + Ux) =0.
2m

The Hamiltonian system D" is not generated by a Lagrangian.
Let u be an inertial frame. The mapping k, : W* — V'* restricted to C,, is
bijective. Mappings

7\u=id><ic;‘]Cm:Mme—>T*M
and
Tku:ide:[meidxK;iCO:MmexVxCO—>TT*M

are symplectomorphisms. The submanifold D = T?xu(D’) is the homogenous
Hamiltonian system described in Section 4. It is generated by the submanifold
K:?\u(K’) and also by the homogenous Lagrangian L defined in Section 4.

Each of the objects D, K, L, D" and K" provides an intrinsic representation
of dynamics. Dynamics is also represented by equivalence classes of pairs (D, u),
(K, u)or (L, u). If two pairs (D', ©') and (D, u) are equivalent then

D' = (id x n x id x id)}(D),
where the mapping n : V* - V¥ is characterized by

0, P =W, p)—mu—(, Hu, glu' —u)) +

m
+ —2 w, T u' —u, g(u’ —u)).

If pairs (K', u') and (X, u) are equivalent then

K’ = (id x n{(K),
and if pairs (L', #") and (L, u) are equivalent then

L' =Lo(d x§),
where the mapping £ : VV— V' is defined by

Ex)=x"—(x', y(u —u.
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12. FRAME DEPENDENT REDUCTIONS IN THE HAMILTON-JACOBI
THEORY

Let F be a function satisfying the Hamilton-Jacobi equations in the Galilei
space. Let # be an inertial frame and let y be a point in N. The function F : N >
- IR defined by

F(') = F)—my' —y, 8@
satisfies the condition
(z,dF) = 0.
It follows that there is a unique function S : M — IR such that
F=Sou.
The function § satisfies the Hamilton-Jacobi equation
1
(u,dSy+ —(g'°dS,dS)+ U= 0.
2m

Each solution F of the intrinsic Hamilton-Jacobi equations can be represented
by an equivalence class of triples (S, u, ¥), where u is an inertial frame, y is a
point in N and S is a solution of the Hamilton-Jacobi equation corresponding
to u. Two triples (S', u', ") and (S, u, ¥) are equivalent if

S'=8—((x"Lx)—c—x"—x)—c, Thu,gb)) +
1
+ 3 (X" —x) —c, 7Xb, g(b)) +(c, g(u)),

where x = u(y), ¢=y'—y, ¢=x(@ and b=x@u —u).

13. REDUCTIONS IN WAVE MECHANICS

Let ¢ be a wave function satisfying the wave equations in the Galilei space.
Let & be an inertial frame and let y be a point in N. The function ¢ defined on
N by

_ m
¢(¥') =exp —i—{ ' —y, g

satisfies the equation

(z,d¢) = 0.
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Consequently there is a unique function ¥ on M such that
a = d/ =} #
It easily shown that y satisfies the Schrédinger equation

h2
ih(w,dy) + — A, ¥ — Uy =0,
2m

A quantum state is represented either by the wave function ¢ or by an equivalen-
ce class or wriples (¥, ¥, ¥), where u is an inertial frame, y is a point in N and ¥ is
a solution of the Schrédinger equation corresponding to u. Equivalent triples
(¥',u’, y") and (Y, u, y) are related by

m
V'(x") =exp i—_; 0(x" —x,b,0) |y (x"),

where

0(x"=x,b,0)=—((x"—x)—c—((x"—x)—c, THu,g(b)) +
1
>y ((x" = x)—c, 7)(b, g(b)) + (¢, 2 (@),

andx=p(y), t=y'—y, c=x(@), b=x{'—u).
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