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INTRODUCTION

As is well known Newton’s equationsdo not dependon the inertial frame
chosen.A geometricformulation of Newtonianmechanicsin Newtonianspace-
-time is thereforepossible.On the other handintrinsic formulation of analytical
mechanicsin Newtonianspace-timeis not possiblesince different Lagrangians
and different Hamiltoniansare used for different inertial frames. The sameis

true of the Hamilton-Jacobitheory and Schrodingerwave mechanics.A similar
difficulty encounteredin analyticalmechanicsof chargedparticleswasresolved

by enlargingthe configurationmanifold of the particle [6]. The sametechnique
is used in the presentnote.An intrinsic formulation of analyticalmechanicsand
wave mechanicsis obtained.Conventionalformulationsareobtainedby reducing

the dimensionin a frame dependentway. This work is relatedto the papersof
Bergmann[1], Lévy-Leblond[5] andDuval andKUnzle [4].

The presentpaper is a contributionto a programmeof SymplecticGeometry
and MathematicalPhysicsconductedjointly with ProfessorBenenti at Istituto

di Fisica Matematica<<J.-L. Lagrange>>in Torino. This programmeenjoyesthe
continuedinterestand encouragementby the Director of the Institute Professor
Dionigi Galletto and the support of the Consiglio Nazionale delle Ricerche,

Gruppo Nazionaleperla FisicaMatematica.

1. AFFINE SPACES AND AFFINE TRANSFORMATIONS

An affine space is a triple (M, V, p), whereM is a set, V is a vectorspace,p is
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a mappingof M x M in V andthe following conditionsare satisfied:
(a) p(x,x)=O,

(b) p(x”,x’)+p(x’,x)=p(x”,x),
(c) for eachx the mappingp~:M—* V definedby p~(x’)= p(x’, x) is bijective.

We will write x’ — x insteadof p(x’, x) and x + v insteadof p 1(v).

Automorphisms of an affine space are called affine transformations.More
specifically, a bijective mapping ~ :M-+M is an affine transformationif there

existsa linear transformationa : V-÷V suchthat ct(x’) — cr(x) = a(x’ — x). The
linear transformationa is calledthe linear part of the affine transformationa. An
affine transformation is called a translation if its linear part is the identity

mapping.The groupof affine transformationsof M will be denotedby A(M) and
the group of linear transformationsof V will be denotedby GL(J~).For each
point x in M thereis a bijective relationbetweenelementsof A (M) andGL( V) x

x V. The affine transformationa = (a, c)~correspondingto the pair (a, c) is

definedby

= x + a(x’ — x) + c.

The linear transformationa is the linear part of the affine transformationa=

= (a, c)~and the vectorc is obtainedfrom

c = a(x) — x.

The equality

(a’, c’)~= (a, c)~

implies

a’ = a, C’ = c + a(x’ — x) — (x’ — x).

The compositionrelation

(a’, c’)~o (a,c)~= (a’ o a, a’(c) + c

is easilyverified.

2. THE NEWTONIAN SPACE-TIMEAND GALILEI TRANSFORMATiONS

Let (M, V, p) be an affine spaceof dimension4 representingthe physicalspace-
-time of nonrelativistic physics. Let r be an elementof the space V’~dual to
V. The set

1~,={uEV;(v,r)=O}

is a vectorsubspaceof Vand
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lj={UEV;(v,r)= l}

is an affine subspaceof V. If U : lj x —* is definedby 8 (u’, v) = u’ — v then
(Tlj, 7~,0) is an affine space.Let g : 1~-~7~’be an Euclideanmetric tensoron

T0. The objects‘r andg are used to measuretime intervalsand spacialdistances.
The time~,t elapsedbetweentwo eventsx and x’ in Mis expressedby

= (x’ — x, r).

The two events are simultaneousif (x’ — x, r) = 0. The distanced between

simultaneouseventsx and x’ is calculatedfrom

d
2=(x’—x,g(x’ —x)>.

The system(M, V, p, r, g) is called the Newtonian space-time. An inertial frame

in the Newtonianspace-timeis an elementu of the affine subspace]j.
Automorphisms of the Newtonian space-timeare called Galilei transforma-

tions. The groupof Galilei transformationswill be denotedby GA(M). A Galilei

transformationis an affine transformationa of M whoselinearpart a is an auto-
morphism of the system (V, r,g). Restrictedto 1~the linear transformationa

induces a linear transformationa
0 of 7~.This transformationbelongs to the

group 0(T0) of automorphismsof (?~,g)called orthogonal transformations.
Restrictedto Ij the transformationa inducesan affine transformationa1 of T1.
The orthogonaltransformationa0 is the linear part of a1. The linear transforma-

tion a is completely determinedby the affine transformationa1. It u is any
inertial framethen

a(v) = a(v + (1 — (v, r))u) —(1 — (v, r))a(u) =

= a1(v + (1 — (v, r))u) —(1 — (v, r))a1(u).

It follows that if an inertial frame u is chosenthenelementsof the group GA ( I”)

of automorphismsof (V, r, g) are in one to onecorrespondencewith elements
of 0(T0) x 7~.We will denoteby (a0, b)0 the automorphismcorrespondingto the
pair (a0, b). If a = (a0, b)~then a0 is the orthogonaltransformationof induced

by a andb = a(u) — u. Hence,

a(v) = a0(v— (v, r>u) + (v, r) (u + b).

Theequality

(a~, b’)~ = (a0,b)~

implies

a~= a0, b’ = b + a0(u’ — u) — u’ + u.
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If a = (a0, b)~and a’ = (a~,b’)~then

a’ o a = (a~o a0, a~(b)+

A choice of an event in M introduces a one to one correspondence between
Galilei transformationsand elementsof GA(V) x V. If aninertial frame is chosen

then elementsof GA(V) are in one to one correspondencewith elementsof
0(T0) x 1~.If bothan eventx and an inertial frame u are chosenthen we have a

bijective relation betweenGalilei transformationsand elementsof 0(T0) x x V.

We will denoteby (a0, b, c)(XU) the Galilei transformation((a0, b)~,c)~corres-

pondingto the triple (a0, b, c). If a = (a0, b, c)(XU) then

a(x’)=x+(a0((x’—x)—(x’—x,r)u)+(x’—x,r)(u+b)4-c).

The equality

(a~,b’, c’)(X u) = (a0, b, c)(XU)

implies

a~= a0, b’ = b + a0(u’ — u) — u’ + U

and

= c + a0((x’ — x) — (x’ — x, ‘r)u) + (x’ — x, r)(u + b) — (x’ — x).

If a’ = (a~,b’, c’)(xU) anda = (a0, b, c)(XU) then

a’ o a = (a~o a0, a~(b)+ b’,

a~(c— (c, r>u) + (C, r)(u + b) +

3. NEWTONIAN MECHANICS

Newton’s equationsof motion are secondorder differential equationsin the

Newtonian space-time.Since M is an affine space the tangent bundle TM is
identified with M x V and the second tangent bundle T

2M is identified with
M x V x V. The cotangent bundle T*M is identified with M x V*. The dif-
ferential of a differentiablefunction U : M -+ IR will be interpretedas a mapping
dU : M -+ V*. Let : -+ V denotethe canonicalinjection. A degeneratecontra-
variant metric tensorg’ : V~-~ V is definedby g’ = ° g~o ~ The dynamicsof
a particleof massm is describedby the set

E={(x,x,I)ET2M;(x,r)=l,mx=—g’(dU(x))},

where Uis the potentialenergyof the particle.
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4. INERTIAL FRAMES AND ANALYTICAL MECHANICS

Analytical mechanics of a particle is described by first order differential equa-
tions in the space-time-momentum-energy space T*M identified with M x V*.

An element p of V* represents momentum and energy of a particle. If U is an
inertial frame thenp — (U, p) r is the momentumand e = — (U, p) is the energy.

The tangent bundle TT*M is identified with M x V* x V x V”. In an inertial
frame u the dynamicsof a particle is representedby a submanifoldD of TT*M.
An element(x, p, x’, p’) of TT*M belongsto D if

x’=(x’,r) u+ —g’(p)

in

p’=—(x’,r)dU(x)

and

(u, p) + — (g’(p), p~+ U(x) = 0.
2 in

The submanifold D is a homogenousHamiltonian system[3] generatedby a

submanifoldK of T*M. An element(x, p) of T*M belongsto K if

(U, p) + — (g’(p), p) + U(x) = 0.
2in

The tangent bundle TM is identified with M x V. The homogenousLagrangian
for the systemD is the function L : 7714 -÷ JR definedby

in
L(x,x’) = (x’ — (x’, r~u,g(x’— (x’, r)u)) — (x’, r) U(x).

2(x’, T~

It is easily seenthat submanifoldsD correspondingto differentinertial frames

u and u’ are different. It is not possible to formulateanalytical mechanicsin
Newtonianspace-timein a frame independentway. A frameindependentformu-
lation of analyticalmechanicsis possible in an enlargedspacecalled the Galilei
space.

5. HAMILTON-JACOBI EQUATIONS IN THE NEWTONIAN SPACE-TIME

The Hamilton-Jacobiequationin aninertial frame u is the equation
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(u,dS)+ —(g’odS,dS>+UO
2m

for a function S : M -+ JR.
The Hamilton-Jacobitheory in the Newtonianspace-timeis frame dependent.

An intrinsic Hamilton-Jacobitheorycanbe formulatedin the Galilei space.

6. INERTIAL FRAMES AND SCHRODINGER EQUATIONS

Let u be an inertial frame.The wave function ~i : M -+ C of a particle of mass
m satisfiesthe SchrOdingerequation

h2
ih(u,dt~i)+ —~ ~,11—UI,1J=0.

It is easily seenthat a solution ~i of the Schrodingerequation in one inertial

frame u will not in generalsatisfy the SchrOdingerequationin a different inertial
frame u’. The samequantumstateof a particle must berepresentedby different
wave functionsin referenceto different inertial frames.An intrinsic formulation

of Schrodingerwave mechanicsin Newtonianspace-timeis not possible.A frame
independentformulation of wave mechanicsin the Galilei spaceis describedin
Section 10. ConventionalSchrodingerequationsare obtainedby frame depen-

dentreductions.

7. THE GALILEI SPACEAND GALILEI TRANSFORMATIONS

The Galilei space is a system(N, W, a,j, z), where (N, W. a) is an affine space
of dimension5, g~: W-+ W’1’ is a metric tensorof signature3 andz is a vectorin

W suchthat (z,g(z)) = 0.
Let Z C W be the spaceof vectorsproportionalto z, let Vdenotethe quotient

spaceof W by Z and let x : W -÷ V be the canonicalprojection.Thereis a unique
elementr of V* suchthat

(x(w), r> = (w, j(z)>.

In the space 7~= { vE V; (v, r) = 0} there is a unique metric tensorg : 7~-÷

suchthat

(x(w’), g(x(w))) = (w’, j(w))

if (w,~(z)) = 0 and (w’, j(z)) = 0. Let M denotethe quotient spaceof N by

the equivalencerelation accordingto which two pointsy andy’ are equivalent
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if a(y’, y) belongsto Z. Let j.z : N-÷M be the canonical projection. There is a
uniquemappingp : M xM -+ V such that

p(~(y’),~(y)) = x(a(y’, y)).

The system (M, V, p, r,g) is the Newtonian space-time.We will write y’ —y,

y + w, x’ — x and x + v insteadof a(y’, y), a~1(w),p(x’, x) and p 1(v) respecti-
vely.

An inertial frame in the Galilei spaceis a vector17 in W suchthat (17,I(u~7)~=
and (17,~(z)) = 1. The vector u = x(ii) is an inertial frame in the Newtonian

space-time.
Automorphismsof the Galilei space will be calledextendedGalilei transforma-

tions. An extendedGalilei transformationis an affine transformation~

whoselinearpart~: W —~ W is an automorphismof (It’, ~, z).The groupof extend-
ed Galilei transformationswill be denotedby GA (N) and the groupof automor-

phismsof (W, j. z) will be denotedby GA(W). If ~ is an elementof GA (W) then
thereexistsan elementa of GA (V.1 such that x ° = a o x. Let 17 be an inertial

frame.The space

U={wE W;(w,j(12))= 0}

is a complementof Z in W. It follows that thereexistsa unique mapping~ :

—~ W suchthat x(K~(v))= vand (iç(v), ~(i7)) = 0. Ifa = (a
0,b)~then

= K~(a0(X(w— (w, ~(z))ü))) +

+ (w,~(z))E~(b)+ (v>’,j(z))ii+

— (a0(~(w— (~i’,j(z))Z7)),g(b))z +

— — (b,g(b))(w,~(z))z+(w,~j(ü))z.

Since ~ is completelydeterminedby a it follows that GA(W) and GA(V) are

two canonically isomorphic faithful representationsof the sameabstractgroup.
The choice of a point i in N establishesa one to onerelationbetweenextended
Galilei transformationsand the elementsof GA(W) x W. If 17 = (~,?) then

a(y’) = y +17(y’ —y) + Z.

8. ANALYTICAL MECHANICS IN THE GALILEI SPACE

Spaces TN, T*N and TT*N are identified with N x W, N x ~ andN x W’
1’ x

x W x W’~respectively. We will denote by ~‘ : W~K-+ W the inverse of 17. The
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dynamicsof a particle is describedby a submanifold D of TT*N. An element

(y, r, y’, r’) belongsto D if

1 (y’,j(y’)) 1 —

— (y’,~(z))j’(r) + — + — (y’,j(z))U(y) z
m 2(y’,g(z)) m

and

= — (y’, 17(z))dU(y),

where U = U o p. The submanifold D is a homogenousHamiltonian systemgene-

rated by a submanifold K of T*N. An element (y, r) of T*N belongs to K if

— (~(r),r)+U(y)=0
2m

and

(z,r) = m.

The homogenousLagrangianfor this systemis the function L : TN-+ JR defined

by

m
7(y,y’) = (y’, 17(y’)) — (y’, 17(z)) U(;).

2(y’,17(z))

9. THE HAMILTON-JACOBI THEORY IN THE GALILEI SPACE

The Hamilton-Jacobi theory in the Galilei spaceis basedon the following
two equations:

_(17’odF,dF)+ U=0
2m

and

(z,dF) = m

for a function F : N-+ JR.

10. WAVE MECHANICS IN THE GALILEI SPACE

Quantumstatesof a particle of mass m in the Galilei spacearerepresented

by wavefunctions~ : N —* C satisfying waveequations
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2m g

and

ih(z, dØ) + m~= 0,

where U= U°p.

11. INERTIAL FRAMES AND REDUCTIONS IN ANALYTICAL MECHANICS

Constructionsused in the presentsectionare basedon the theoryof reductions
of symplecticmanifolds[2] adaptedto the affine case.

Let C0and Cm be subspacesof W” definedby

C0 ={r~ W*; (r, z) = 0}

and

Cm ={rEW*;(r,z)=m}.

The spaceC0 is the polarof Z. It is also the imageof x~ If amappingw : Cm x
x Cm -÷C0 is defined by w(r’, r) = r’ —r then (Cm’ C0, w) is anaffine space.The

spaceN x Cm is a coisotropicsubspaceof thesymplecticaffine spaceT*N = N x

x W ‘K The reducedsymplecticspaceis theaffine spaceM x Cm~The mappingp x

xid :Nx Cm~*MX Cm will be denoted by v. The spaceT(Nx Cm)=NX CmX

x W x C0 is a coisotropic subspaceof the affine symplecticspaceTT’KN = N x

x W” x W x W’~.The reduced symplectic spaceis the spaceT(M x Cm) =M x

xC~xVxC0.Themappingpxidxxxid:NxCxWxC0_s.MxCxVxC0

will be denotedby Tv.

ReducingtheHamiltonion systemD we obtain thesubmanifold

Dr=Tp(DflUklxCmx VxC0)).

An element(x, r, x’, r’) ofM x Cm x V x C0 is in DT if

= —(x’, T)X*(dU(x)),

= — (x’, r)x(17’(r))

and

— (g’(r), r) + U(x) = 0.
2m
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The submanifold D’~ is a homogenousHamiltonian systemgeneratedby the

submanifold

K~=v(Kfl(Mx Cm)).

An element (x, r) of M x Cm is in Kr if

— (j’(r), r) + U(x) = 0.
2m

The Hamiltonian systemD~is not generatedby a Lagrangian.
Let 17 be an inertial frame. The mapping ~ : W~..+ V” restricted to C0> is

bijective. Mappings

Xu=idXK*IC :MxCm~~*T*M

and

TX~=id x g*~C x id x i~C0 :M x CmX Vx C0-+ TT’KM

are symplectomorphisms. The submanifold D = TX~(D
T) is the homogenous

Hamiltonian system describedin Section 4. It is generatedby the submanifold

K = X
0(Kr) and also by the homogenousLagrangian L defined in Section 4.

Each of the objects D, K, L, D’~and K’~provides an intrinsic representation

of dynamics.Dynamicsis also representedby equivalenceclassesof pairs(D, u),

(K, u) or (L, u). If two pairs(D’, u’) and(D, u) areequivalentthen

D’ = (id ~l) x id x id)(D),

wherethe mappingi~: V’K —* V~’is characterizedby

(v, 77(p)) = (V. p) — in(v — (v, r)u. g(u’ — u)) +

m
+ — Ky, r)(u’ — U, g(u’ — u)).

2

If pairs(K’, u’) and(K, u) areequivalentthen

K’ = (id x

andif pairs (L’, u’) and(L, u) areequivalentthen

= L o (id x

wherethe mapping E : V—s Vis definedby

~(x’) = x’ — (x’, r) (u’ — u).
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12. FRAME DEPENDENT REDUCTIONS IN THE HAMILTON-JACOBI
THEORY

Let F be a function satisfying the Hamilton -Jacobi equations in the Galilei

space.Let 17 be an inertial frame and let y be a point in N. The functionF :N-+

-÷ IR definedby

F(y’) = F(y’) — m(y’ —y, 17(17))

satisfiesthecondition

(z, dF) = 0.

It follows that thereis a uniquefunctionS :M -+ JRsuchthat

So p.

The function S satisfies the Hamilton-Jacobi equation

(U, dS) + — (g’ o dS,dS> + U = 0.
2m

Each solution F of theintrinsicHamilton-Jacobiequationscan be represented

by an equivalenceclassof triples (5,U, y), where u is an inertial frame,y is a
point in N and S is a solution of the Hamilton-Jacobi equation corresponding

to U. Two triples (S’, U’, y’) and (S, u,y) are equivalent if

S’=S—((x”’—x)—C—((x”—x)—c,r)U,g(b))+

+ — ((x” — x) — c, rXb, g(b)) + (~17(17)),
2

wherex = p(y), ~= y’ —y, c = x(Z) and b = x(i7’ — u).

13. REDUCTIONS IN WAVE MECHANICS

Let 0 be a wave function satisfyingthe wave equationsin the Galilei space.
Let 17 be an inertial frame and let y be a point in N. The function ~ definedon
Nby

m
Ø(y’)=exp —i— (y’—y,j(ü)) 0(y’)

h

satisfies the equation

(z, dØ) = 0.
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Consequently there is a unique function >,(i onM such that

0
It easily shown that 0 satisfiesthe Schrodingerequation

ih(u,dO)+ ~ 0—U0=0.
2m

A quantum state is representedeither by the wavefunction 0 or by an equivalen-

ce classor triples (0, u,y), where u is aninertial frame,yis a point in Nand 0 is
a solution of the SchrOdingerequationcorrespondingto u. Equivalent triples

(0’, u’,y’) and(0,u,y) are relatedby

= exp mh O(x” —x, b~~))0(x”)~

where

+ — ((x” — x) — c, r)(b, g(b)) + (Z,~(i7)),
2

andx=p(y), ?=y’—y, c=x(?), b=~(ri’—u).
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